Bounds on (n, r)-arcs and their application to linear codes
نویسندگان
چکیده
This article reviews some of the principal and recently-discovered lower and upper bounds on the maximum size of (n, r)-arcs in PG(2, q), sets of n points with at most r points on a line. Some of the upper bounds are used to improve the Griesmer bound for linear codes in certain cases. Also, a table is included showing the current best upper and lower bounds for q ≤ 19, and a number of open problems are discussed.
منابع مشابه
Revisiting the Karnin, Greene and Hellman Bounds
The algebraic setting for threshold secret sharing scheme can vary, dependent on the application. This algebraic setting can limit the number of participants of an ideal secret sharing scheme. Thus it is important to know for which thresholds one could utilize an ideal threshold sharing scheme and for which thresholds one would have to use nonideal schemes. The implication is that more than one...
متن کاملConstructions and Properties of k out of n Visual Secret Sharing Schemes
The idea of visual k out of n secret sharing schemes was introduced in [?]. Explicit constructions for k = 2 and k = n can be found there. For general k out of n schemes bounds have been described. Here, two general k out of n constructions are presented. Their parameters are related to those of maximum size arcs or MDS codes. Further, results on the structure of k out of n schemes, such as bou...
متن کاملConstruction of linear codes with prescribed minimum distance
We construct linear codes over finite fields with prescribed minimum distance by selectiong columns of the generator matrix. This selection problem can be formulated as an integer programming problem. In order to reduce the search space we prescribe a group of automorphisms. Then, in many cases the resulting integer programming problem can be solved by lattice point enumeration. With this appro...
متن کاملNew arcs in projective Hjelmslev planes over Galois rings
It is known that some good linear codes over a finite ring (R-linear codes) arise from interesting point constellations in certain projective geometries. For example, the expurgated Nordstrom-Robinson code, a nonlinear binary [14, 6, 6]-code which has higher minimum distance than any linear binary [14, 6]-code, can be constructed from a maximal 2-arc in the projective Hjelmslev plane over Z4. W...
متن کاملCoprimitive sets and inextendable codes
Complete (n, r)-arcs in PG(k − 1, q) and projective (n, k, n − r)q-codes that admit no projective extensions are equivalent objects. We show that projective codes of reasonable length admit only projective extensions. Thus, we are able to prove the maximality of many known linear codes. At the same time our results sharply limit the possibilities for constructing long nonlinear codes. We also s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Finite Fields and Their Applications
دوره 11 شماره
صفحات -
تاریخ انتشار 2005